Interface passivation using diketopyrrolopyrrole‐oligothiophene copolymer to improve the performance of perovskite solar cells

Author:

Abicho Samuel1234,Hailegnaw Bekele5,Mayr Felix3,Cobet Munise3,Yumusak Cigdem3,Esubalew Siraye1,Yohannes Teketel6,Kaltenbrunner Martin5,Sariciftci Niyazi Serdar3,Scharber Markus Clark3,Workneh Getachew Adam12ORCID

Affiliation:

1. Department of Industrial Chemistry Addis Ababa Science and Technology University Addis Ababa Ethiopia

2. Sustainable Energy Center of Excellence Addis Ababa Science and Technology University Addis Ababa Ethiopia

3. Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry Johannes Kepler University Linz Austria

4. Department of Chemistry Hawassa University Hawassa Ethiopia

5. Division of Soft Matter Physics and LIT Soft Materials Lab Johannes Kepler University Linz Austria

6. Department of Chemistry Addis Ababa University Addis Ababa Ethiopia

Abstract

AbstractThe unprecedented increase in power conversion efficiency (PCE) of low‐cost organo‐inorganic halide perovskite solar cells (OIHPSCs) toward its Shockley‐Queisser limit intriguingly has prompted researchers to investigate the disadvantages of these devices. The issue of operational stability is the main hurdle challenging the way forward for commercialization. To address this, various engineering processes like composition, additives, anti‐solvents, bulk and interface passivation, and deposition techniques have been widely applied to manage both extrinsic and intrinsic factors that induce degradation of the OIHPSCs. In this work, we employed interface passivation, which is an efficient approach to reduce nonradiative recombination. An ultrathin layer of electron donor diketopyrrolopyrrole‐oligothiophene copolymer (DPP860) was applied as an interface passivator between the photoactive layer and [6,6]‐phenyl C61 butyric acid methyl ester (PCBM). The role of the interface passivation on optoelectronic properties of the OIHPSCs was assessed using current density versus voltage (J‐V) characteristics, photoluminescence spectroscopy and time‐resolved photoluminescence spectroscopy. The findings show devices treated with DPP860 exhibit enhanced current density (Jsc) and fill factor, attributing for suppressed nonradiative recombination. Moreover, it shows relative improvement in the stability of the device. The results of this finding reveal that using oligothiophene copolymer can enhance the photovoltaic performance and the stability of inverted OIHPSCs in the ambient environment.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3