Effects of structural parameters on the load distribution unevenness in CFRP hybrid bonded‐bolted joint

Author:

Shi Jianwei1ORCID,Yang Xiaodong1ORCID,Du Kou2ORCID,Guo Qiming1,Bai Zhaohui2

Affiliation:

1. School of Mechanical and Power Engineering Zhengzhou University Zhengzhou China

2. Inner Mongolia North Heavy Industries Group Corp. Ltd. Inner Mongolia China

Abstract

AbstractCarbon Fiber Reinforced Polymer (CFRP) Hybrid Bonded/Bolted (HBB) joint structures are distinguished for their superior jointing performance among current mechanical joint systems, making them a favored option for mechanical joints. These structures are characterized by many structural parameters, with the relationship between these parameters and jointing performance being notably complex. Additionally, the laminate's brittleness and the uneven distribution of bolt loads in multi‐bolt joint structures impair the overall jointing performance. To investigate the impact of structural parameters on the uneven load distribution within CFRP HBB joint structures and improve their jointing performance, a finite element analysis (FEA) model grounded in 3D Hashin failure criterion is developed. Validation of the model with experimental data confirmed the uneven load distribution among bolts in multi‐bolt joints. The study elucidated the influence of changes in structural parameters (overlap length, bolt‐hole spacing, and clearance fit) on the uneven load distribution and the connection strength of CFRP HBB joint structures. A negative correlation is found between the unevenness of load distribution and connection strength, offering insights for enhancing and researching connection strength in CFRP HBB joint structures.Highlights Developed a FEA model based on the 3D Hashin failure criterion for CFRP Bonded‐Bolted joints. Identified key factors affecting HBB joint load distribution and jointing performance. Evaluated the impact of overlap length, bolt‐hole spacing, and clearance fit on CFRP joints. Suggested design optimizations for enhancing the performance of HBB joints.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3