Author:
Henke Sebastian,Schneemann Andreas,Fischer Roland A.
Abstract
AbstractFunctionalized metal–organic frameworks (fu‐MOFs) of general formula [Zn2(fu‐L)2dabco]n show unprecedentedly large uniaxial positive and negative thermal expansion (fu‐L = alkoxy functionalized 1,4‐benzenedicarboxylate, dabco = 1,4‐diazabicyclo[2.2.2]octane). The magnitude of the volumetric thermal expansion is more comparable to property of liquid water rather than any crystalline solid‐state material. The alkoxy side chains of fu‐L are connected to the framework skeleton but nevertheless exhibit large conformational flexibility. Thermally induced motion of these side chains induces extremely large anisotropic framework expansion and eventually triggers reversible solid state phase transitions to drastically expanded structures. The thermo‐responsive properties of these hybrid solid–liquid materials are precisely controlled by the choice and combination of fu‐Ls and depend on functional moieties and chain lengths. In principle, this combinatorial approach allows for a targeted design of extreme thermo‐mechanical properties of MOFs addressing the regime between crystalline solid matter and the liquid state.
Cited by
213 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献