Adropin may promote insulin stimulated steroidogenesis and spermatogenesis in adult mice testes

Author:

Tripathi Shashank1,Maurya Shweta1,Singh Ajit1ORCID

Affiliation:

1. Department of Zoology, Institute of Science Banaras Hindu University Varanasi India

Abstract

AbstractAdropin is a versatile peptide which was discovered as a novel metabolic hormone that is involved in the regulation of lipid and glucose homeostasis. However, its possible role in the testicular function is not yet understood. The aim of our study was to explore the distribution pattern of adropin and GPR19 in various cell types and its possible role in testicular functions of adult mice. Immunohistochemical study revealed the intense immunoreactivity of adropin in the Leydig cells, while GPR19 showed intense immunoreactivity in the pachytene spermatocytes and mild immunoreactivity in Leydig cells and primary as well as secondary spermatocytes in mouse testis. Enho mRNA was also found to be expressed in the mouse testis. These findings suggested that adropin‐GPR19 signaling may act in autocrine/paracrine manner to modulate testicular functions. Furthermore, to find out the direct role of adropin in the testicular function, in vitro study was performed in which testicular slices were cultured with adropin alone (10 and 100 ng/mL) and in combination with insulin (5 μg/mL). Adropin alone inhibited testicular testosterone synthesis by inhibiting the expression of P450‐SCC, 3β‐HSD, and 17β‐HSD while along with insulin stimulated the testicular testosterone synthesis by increasing the expression of GPR19, IR, StAR, P450‐SCC, 3β‐HSD, and 17β‐HSD. Adropin alone or in combination with insulin promoted germ cell survival and proliferation by upregulating the expression of PCNA, Bcl2, and pERK1/2. Thus, it can be concluded that adropin‐GPR19 signaling promotes insulin stimulated steroidogenesis and germ cell survival as well as proliferation in the mice testes in an autocrine/paracrine manner.

Publisher

Wiley

Subject

Genetics,Molecular Biology,Animal Science and Zoology,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3