Hydrozirconation of Alkynes

Author:

Milligan John A.,Hammill Courtney V.,Crocker Desirae L.,Wipf Peter

Abstract

Since the first preparation of organozirconocenes from alkenes and alkynes in 1972, hydrozirconation has become one of the most commonly used stoichiometric methods to convert readily available starting materials into reactive but stable organometallic intermediates. A broad range of subsequent transformations may be employed to convert organozirconocenes in situ into high‐value functionalized products, often with the strategic formation of one (or several) new carbon–carbon bonds.This chapter focuses on the hydrozirconation of terminal and internal alkynes, and the subsequent synthetic transformations of the resulting alkenylzirconocenes. Zirconocene hydrochloride, Cp2Zr(H)Cl, is most frequently employed for the hydrozirconation step and can be used as a reagent or prepared in situ. Subsequent reactions of alkenylzirconocenes include additions to inorganic electrophiles such as halogens, as well as in situ ligand transfers to other metals, such as palladium and zinc, that further expand the range of accessible bond formations. The initial discussion focuses on the mechanism and stereochemical considerations, and on the steric and electronic factors that determine the regiochemistry of the either kinetically or thermodynamically controlled hydrozirconation. The “Scope and Limitations” section presents information on functional group compatibilities and is organized by the type of synthetic transformation of alkenylzirconocenes. Representative applications of the hydrozirconation of alkynes are showcased in syntheses of natural products, comparisons to alternative methods for the hydrometallation of alkynes.The goal of this chapter is to demonstrate the significance of hydrozirconation in organic synthesis, including the utility of the stoichiometric zirconium organometallics obtained from alkyne substrates, and to provide inspiration for the future development of new synthetic methods and strategies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3