Recent Progress, Challenges, and Opportunities of Conducting Polymers for Energy Storage Applications

Author:

Masood Maria1,Hussain Sadam1,Sohail Manzar1,Rehman Aamal1,Uzzaman M. Akhtar2,Alnaser Ibrahim A.34,Karim Mohammad Rezaul3ORCID,Wahab Md. Abdul5

Affiliation:

1. Department of Chemistry School of Natural Sciences National University of Sciences and Technology H-12 Islamabad 44000 Pakistan

2. Solar Energy Research Institute (SERI) Universiti Kebangsaan Malaysia, UKM Bangi 43600 Selangor, Malaysia

3. Center of Excellence for Research in Engineering Materials (CEREM) Deanship of Scientific Research (DSR) King Saud University Riyadh 11421 Saudi Arabia

4. Mechanical Engineering Department College of Engineering King Saud University Riyadh 11421 Saudi Arabia

5. Process and Energy Engineering Discipline School of Mechanical Medical and Process Engineering Faculty of Engineering Queensland University of Technology 2 George St Brisbane, GPO Box 2434 Brisbane Queensland 4001 Australia

Abstract

AbstractThe industrial and academic sectors have been closely observing the advantages of conventional polymers, primarily due to their easy preparation and low manufacturing costs. Recently, there has been a growing interest in conducting polymers (CPs) due to their unique characteristics. These polymers offer improved environmental durability, impressive mechanical and optical potential, ease of manufacturability, and a range of electrical properties compared to conventional inorganic materials. This review focuses on the chemical structures, properties, and synthesis of the most prevalent types of CPs. Furthermore, an analysis of conducting composites is conducted to evaluate their performance in energy storage devices. The review specifically focuses on the growth of their operations in energy storage technologies such as Lithium ion batteries, fuel cells, and supercapacitors (SCs). It also explores the current challenges faced by CPs potential applications for advancing energy storage systems. This review aims to advance understanding of the role of CPs for energy storage applications. In summary, conductive polymers offer a wide range of applications due to their unique features and suitable production techniques for energy storage system (ESS) application. However, there is still significant work to be carried out to enhance the performance of conduction polymers for ESSs. This overview has provided an introduction to traditional conductive polymers as functional materials, including information on their polymerization processes, advantages, disadvantages and the most promising ESS applications to date, such as various batteries and supercapacitors. It is worth noting that conductive polymers hold the potential to become crucial components in future ESSs. Achieving this potential will require further advancements in synthesis techniques, integration with other materials, as well as maximization and optimization of their capabilities.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3