Synthesis, Crystal Growth, Structural Characterization, Supramolecular Chemistry, and Theoretical Calculations of Methylenium Salts of Benzenesulfonates

Author:

Ullah Ijaz1,Li Yunbin1,Huang Jiali1,Zhang Zhangjing1,Xiang Shengchang1,Aqil Shehzad Rao2,Iqbal Javed3,Khan Ezzat3ORCID

Affiliation:

1. Fujian Provincial Key Laboratory of Polymer Materials College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China

2. Department of Chemistry University of Agriculture Faisalabad 38000 Pakistan

3. Department of Chemistry College of Science University of Bahrain, Main campus Sakhir 32038 Manama Kingdom of Bahrain

Abstract

AbstractThe current investigation describes the synthesis of four novel methylene blue (MB) salts of benzene sulfonate derivatives, featuring bulky anionic groups. The process involves treating chloride salt of MB with sodium salts of 4‐aminobenzene sulfonate, 4‐styrenebenzene sulfonate, 3,7‐naphthalene disulfonate, and anthraquinone‐1,5‐naphthalene disulfonate to substitute the chloride ion with benzoate sulfonate anion in MB‐chloride. The synthesis includes quaternizing MB‐chloride with the corresponding benzene sulfonate in minimal aqueous solvent to promote precipitation. The resultant precipitates were subsequently dissolved in an appropriate solvent to enable the crystallization of the ultimate product. The dissolution occurs either at ambient temperature or with heat. The crystals of the resultant salts were characterized using various analytical techniques like UV‐visible, and FT‐IR spectroscopy, TGA, single crystal X‐ray diffraction and powder X‐ray diffraction analysis. The UV‐visible spectroscopic results, frontier molecular orbital, density of states, molecular electrostatic potentials, and HOMO‐LUMO energy gaps were estimated by DFT. Structural analysis revealed that supramolecular structure of compounds achieved stabilization through electrostatic interactions, a diverse range of both conventional and non‐conventional hydrogen bonds, π–π stacking interactions, and other short‐range interactions. The investigation delves into intricate details and offers a thorough discussion of the fundamental principles that contribute to the formation and stabilization of supramolecular structures.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3