Fetal growth analysis from ultrasound videos based on different biometrics using optimal segmentation and hybrid classifier

Author:

Devisri B.1ORCID,Kavitha M.2

Affiliation:

1. Department of Electronics and communication Engineering K. Ramakrishnan College of Technology, (Affiliated to Anna University Chennai) Trichy India

2. Department of Electronics and Communication Engineering K. Ramakrishnan College of Technology Trichy India

Abstract

Birth defects and their associated deaths, high health and financial costs of maternal care and associated morbidity are major contributors to infant mortality. If permitted by law, prenatal diagnosis allows for intrauterine care, more complicated hospital deliveries, and termination of pregnancy. During pregnancy, a set of measurements is commonly used to monitor the fetal health, including fetal head circumference, crown‐rump length, abdominal circumference, and femur length. Because of the intricate interactions between the biological tissues and the US waves mother and fetus, analyzing fetal US images from a specialized perspective is difficult. Artifacts include acoustic shadows, speckle noise, motion blur, and missing borders. The fetus moves quickly, body structures close, and the weeks of pregnancy vary greatly. In this work, we propose a fetal growth analysis through US image of head circumference biometry using optimal segmentation and hybrid classifier. First, we introduce a hybrid whale with oppositional fruit fly optimization (WOFF) algorithm for optimal segmentation of segment fetal head which improves the detection accuracy. Next, an improved U‐Net design is utilized for the hidden feature (head circumference biometry) extraction which extracts features from the segmented extraction. Then, we design a modified Boosting arithmetic optimization (MBAO) algorithm for feature optimization to selects optimal best features among multiple features for the reduction of data dimensionality issues. Furthermore, a hybrid deep learning technique called bi‐directional LSTM with convolutional neural network (B‐LSTM‐CNN) for fetal growth analysis to compute the fetus growth and health. Finally, we validate our proposed method through the open benchmark datasets are HC18 (Ultrasound image) and oxford university research archive (ORA‐data) (Ultrasound video frames). We compared the simulation results of our proposed algorithm with the existing state‐of‐art techniques in terms of various metrics.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3