Multi‐hazard fragility assessment of monopile offshore wind turbines under earthquake, wind and wave loads

Author:

Zhang Ziliang1ORCID,De Risi Raffaele1ORCID,Sextos Anastasios1ORCID

Affiliation:

1. University of Bristol Bristol UK

Abstract

AbstractThis study establishes a multi‐hazard probabilistic assessment framework for assessing the integrity of monopile offshore wind turbines (OWT) under the stochastic coupled effect of wind, wave and earthquake loading. The procedure deals with the entire operational range of inflow wind speed (i.e., 3–25 m/s), for which the probability of failure under multi‐hazard excitations is found to be non‐negligible. Numerical analysis is performed by implementing nonlinear finite‐element models of the OWT developed in OpenSees. The dynamic response of the OWT system under wind‐ and wave‐load combinations is individually validated against those obtained from the aero‐hydro‐servo‐elastic simulator OpenFAST. Following the Latin‐hypercube approach, a cloud‐based assessment procedure is then performed with an ensemble of 300 earthquake ground motions, from which the multi‐hazard performance of the OWT regarding the serviceability limit state (SLS) and the ultimate limit state (ULS) can be evaluated. The epistemic uncertainty associated with various loads, structural properties, and soil conditions is also accounted for. Based on this probabilistic assessment framework, the sensitivity of the resulting OWT fragility surfaces to different statistical regression methods and wind—ground motion intensity measure pairs (IM‐pairs) is further scrutinised. Regression methods are comparatively evaluated. The efficiency, practicality, proficiency and sufficiency of various IM‐pairs are examined for the purpose of assessing operating OWT multi‐hazard fragility functions. The optimum IM‐pair is then employed in a trained Gaussian Process Regression (GPR) scheme for cloud data regression to assess the multi‐hazard fragility of the system. The derived multi‐hazard fragility function shows that the contribution of seismic forces in structural demand for a design‐level earthquake is comparable to those caused by operational‐level wind and wave loads.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference87 articles.

1. GWEC (Global Wind Energy Council).Global Wind Energy Council Report 2018.2019.

2. WindEurope.Financing and Investment Trends ‐ The European Wind Industry in 2019.2020.

3. WindEurope.Offshore Wind in Europe – Key Trends and Statistics 2019.2020.

4. A Technical Overview of ASCE/AWEA RP2011: Recommended Practice for Compliance of Large Land-Based Wind Turbine Support Structures

5. Wind turbines and seismic hazard: a state-of-the-art review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3