Low‐velocity impact behavior of composite laminates based on bio‐inspired stacking sequence

Author:

Zhou Tian12,Yang Hongyuan12,Peng Chaoyi34,Ren Yiru12ORCID

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body Hunan University Changsha Hunan China

2. College of Mechanical and Vehicle Engineering Hunan University Changsha Hunan China

3. College of Materials Science and Engineering Hunan University Changsha Hunan China

4. Zhuzhou Times New Material Technology Co., LTD., CRRC Zhuzhou Hunan China

Abstract

AbstractThis work aims to study the effects of bionic spiral stacking sequence, impact energy and impactor shape on the impact resistance of laminates. The finite element model is established based on the stress failure criterion, progressive damage evolution, and the triangle traction‐separation law. The reliability of the finite element model is validated through rigorous comparison with experimental data. The study investigates the influence of laminate layup sequence, impact energy, and impactor shape on the impact resistance of laminates. The results show that during low‐speed impacts, laminate damage is primarily characterized by fiber breakage, matrix cracking, and delamination. Matrix cracking and delamination become more pronounced as the impact energy increases. The design of linear spiral ply and power function spiral ply has a positive effect on the impact resistance of laminates. The impact resistance of laminates is sensitive to the sharpness of the impactor and the level of impact energy. Higher impact energy and sharper impactor shapes lead to increased energy absorption in the laminate, resulting in more pronounced damage failure.Highlights The impact resistance of bionic spiral composite laminates is studied. Three biologically inspired stacking sequences were designed. A numerical simulation method is proposed and verified. The low‐velocity impact characteristics of bionic laminates are revealed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3