Hydrochemical evolution and hydrological zoning characteristics of a shallow groundwater system in Baiyangdian Wetland, North China Plain

Author:

Guo Xiaojiao1ORCID,Wang Wenzhong1,Shi Jiansheng12ORCID,Chen Zongyu1,Guo Jiao1ORCID,Wang Huiwei1,Liu Wen3,Miao Ying4

Affiliation:

1. Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources Institute of Hydrogeology and Environmental Geology, CAGS Shijiazhuang China

2. Ecogeological Survey Center of China Geological Survey China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Beijing China

3. 801 Institute of Hydrogeology and Engineering Geology Shangdong Provincial Bureau of Geology & Mineral Resources Jinan China

4. Key Laboratory of Karst Dynamics, Institute of Karst Geology Chinese Academy of Geological Sciences Guilin Guangxi China

Abstract

AbstractA comprehensive understanding of the hydrochemical evolution and spatial patterns of shallow groundwater systems is essential for water resource management and wetland ecological restoration. The Baiyangdian Wetland is one of the most concerning areas because of the development of the Xiong'an New Area. The spatial characteristics of groundwater hydrochemistry and potential controlling factors associated with hydrochemical evolution remain unclear. In this study, hydrogeochemistry together with the hierarchical cluster analysis were used to elucidate the hydrochemical processes and hydrological zoning patterns of shallow groundwater systems in the Baiyangdian Wetland, North China Plain. The results showed that hydrochemical compositions of shallow groundwater had considerable spatial variations, which was closely related to the inflow rivers hydrochemistry and the dynamics of groundwater–surface water interactions. A significant increase in SO42− concentration occurring at the cone of the depression was related to extensive pumping caused by anthropogenic activities. Anthropogenic activities were also a major factor controlling the spatial distribution patterns of shallow groundwater hydrochemistry. Ca2+, Mg2+, and SO42− in the wetland and shallow groundwater were primarily derived from carbonate and gypsum dissolution, while Na+ and Cl originated from halite and silicate dissolution. Rock weathering predominated the geochemical evolution of shallow groundwater in conjunction with carbonate precipitation and cation exchange. The hydrochemistry of the shallow groundwater system presented distinct spatial zonation patterns that were classified into four clusters corresponding to seven subzones. In Zones I–IV, water‐rock interaction was the dominant factor controlling shallow groundwater chemistry, which was driven by the positive groundwater–surface water exchange. The coupled effects of anthropogenic activities and river infiltration and mixing caused the high levels of dissolved components in Zones V–VII. This study contributes to have a better understanding of the water cycle and hydraulic connections among different bodies, and will benefit the rational evaluation of hydrochemical evolution and wetland ecological restoration in the Baiyangdian Wetland.

Funder

Chinese Academy of Geological Sciences, Ministry of Natural Resources

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3