Credit risk prediction based on causal machine learning: Bayesian network learning, default inference, and interpretation

Author:

Liu Jiaming1,Zhang Xuemei1,Xiong Haitao1

Affiliation:

1. School of Computer Science and Artificial Intelligence Beijing Technology and Business University Beijing China

Abstract

AbstractThe predictive and interpretable power of models is crucial for financial risk management. The purpose of this study was to perform credit risk prediction in a structured causal network with four stages—data processing, structural learning, parameter learning, and interpretation of inferences—and use six real credit datasets to conduct empirical research on the proposed model. Compared with traditional machine learning algorithms, we comprehensively explain the results of credit default through forward and reverse reasoning. We also compared our model with the post hoc interpretation models local interpretable model‐agnostic explanations (LIME) and shapley additive explanations (SHAP) to verify the interpretability of Bayesian networks. The experimental results show that the prediction performance of Bayesian networks is superior to traditional machine learning models and similar to the performance of ensemble models. Furthermore, Bayesian networks offer valuable insights into the interplay of features by considering their causal relationships and enable an assessment of how individual features influence the prediction outcome. In this study, what‐if analysis was performed to assess credit default probabilities under various conditions. This analysis provides decision‐makers with the necessary tools to make informed judgments about the risk profile of borrowers. Consequently, we consider Bayesian networks as a viable tool for credit risk prediction models in terms of prediction performance and interpretability.

Funder

National Natural Science Foundation of China

Beijing Municipal Office of Philosophy and Social Science Planning

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3