Identification of a novel gene signature for neuroblastoma differentiation using a Boolean implication network

Author:

Zage Peter E.1,Huo Yuchen1,Subramonian Divya1ORCID,Le Clorennec Christophe1,Ghosh Pradipta234,Sahoo Debashis15

Affiliation:

1. Department of Pediatrics, Division of Hematology‐Oncology University of California San Diego La Jolla California USA

2. Department of Medicine University of California San Diego La Jolla California USA

3. Department of Cellular and Molecular Medicine University of California San Diego La Jolla California USA

4. Veterans Affairs Medical Center La Jolla California USA

5. Department of Computer Science and Engineering Jacobs School of Engineering, University of California San Diego La Jolla California USA

Abstract

AbstractAlthough induction of differentiation represents an effective strategy for neuroblastoma treatment, the mechanisms underlying neuroblastoma differentiation are poorly understood. We generated a computational model of neuroblastoma differentiation consisting of interconnected gene clusters identified based on symmetric and asymmetric gene expression relationships. We identified a differentiation signature consisting of series of gene clusters comprised of 1251 independent genes that predicted neuroblastoma differentiation in independent datasets and in neuroblastoma cell lines treated with agents known to induce differentiation. This differentiation signature was associated with patient outcomes in multiple independent patient cohorts and validated the role of MYCN expression as a marker of neuroblastoma differentiation. Our results further identified novel genes associated with MYCN via asymmetric Boolean implication relationships that would not have been identified using symmetric computational approaches and that were associated with both neuroblastoma differentiation and patient outcomes. Our differentiation signature included a cluster of genes involved in intracellular signaling and growth factor receptor trafficking pathways that is strongly associated with neuroblastoma differentiation, and we validated the associations of UBE4B, a gene within this cluster, with neuroblastoma cell and tumor differentiation. Our findings demonstrate that Boolean network analyses of symmetric and asymmetric gene expression relationships can identify novel genes and pathways relevant for neuroblastoma tumor differentiation that could represent potential therapeutic targets.

Funder

Hyundai Hope On Wheels

National Institutes of Health

National Institute of General Medical Sciences

Publisher

Wiley

Subject

Cancer Research,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3