Soil moisture and probe characteristics affect core integrity and soil test results

Author:

Drescher Gerson L.1ORCID,Slaton Nathan A.1ORCID,Ahmad Uzair1ORCID,Smartt Alden D.1,Roberts Trenton L.1ORCID,Gbur Edward E.2ORCID

Affiliation:

1. Department of Crop, Soil, and Environmental Sciences University of Arkansas System Division of Agriculture Fayetteville Arkansas USA

2. Agricultural Statistics Laboratory, Arkansas Agricultural Experiment Station University of Arkansas System Division of Agriculture Fayetteville Arkansas USA

Abstract

AbstractProper soil sampling is critical for accurate fertilizer recommendations. Samples collected in extremely wet or dry conditions may compromise the integrity of the sample and influence analytical results. We evaluated the effects of six soil moistures, two sampling depths (0–10 and 0–15 cm), and two soil probes on soil core uniformity and soil test results. Moisture treatments encompassed a range from dry (11.2%–18.5% moisture) to saturated conditions in Captina, Dewitt, Calhoun, and Calloway silt loam soils. Core depth and dry core weight were measured in all soils, and pH and Mehlich‐3 extractable P, K, S, and Zn were assessed for Calhoun and Calloway soils. Soil moisture, probe, or their interaction influenced core depth and weight, while chemical properties were significantly affected only by soil moisture. Sampling very dry or saturated soils compromised the collection of uniform cores mainly for the 0‐ to 15‐cm depth. Soil pH tended to increase with increasing moisture, but the mean values fluctuated only ±0.3 units. Across soils and depths, extractable S consistently decreased by 16%–48% as soil moisture at sampling time increased. Phosphorus was affected by soil moisture for 0–15 cm samples in both soils but showed no clear pattern. Soil moisture at the time of sampling affected soil test K for both soils and sample depths with individual cores varying up to 47 mg kg−1 (i.e., 59–106 mg kg−1). Greater soil test P and K variability occurred for very dry and wet conditions, which often prohibit collecting samples to the proper depth and could impact fertilizer rate recommendations.

Funder

Division of Agriculture, University of Arkansas System

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3