No‐till cover crop effects on the hydro‐physical properties of a silt loam

Author:

Lieskamp De'Anna R.1,Moseley Abigail M.2,Legrain Isabelle M. R.2,Kelly Cheyenne1,Haque Md Ariful3ORCID,Ku Seockmo3ORCID,Haruna Samuel I.1ORCID

Affiliation:

1. School of Agriculture, College of Basic and Applied Sciences Middle Tennessee State University Murfreesboro Tennessee USA

2. Environmental Science Department, College of Basic and Applied Sciences Middle Tennessee State University Murfreesboro Tennessee USA

3. Department of Food Science and Technology, College of Agriculture and Life Sciences Texas A&M University College Station Texas USA

Abstract

AbstractSoil hydraulic and physical properties can be influenced by various land management practices, and they determine water movement and storage within the vadose zone, with both agronomic and environmental effects. The objective of this study was to evaluate the effects of two such practices (no‐till [NT] and cover crops [CCs]) on soil hydraulic (e.g., saturated hydraulic conductivity [Ksat], and water retention) and physical (e.g., bulk density [BD], pore size distribution, air‐filled pore spaces [AFPSs], and water‐filled pore spaces [WFPSs]) properties. The CCs used included crimson clover (Trifolium incarnatum L.), hairy vetch (Vicia villosa Roth.), winter peas (Lathyrus hirsutus L.), oats (Avena sativa), winter wheat (Triticum aestivum L.), triticale (Triticale hexaploide Lart.), flax (Linum usitassimum L.), and barley (Hordeum vulgare L.). Soil samples were collected and analyzed during 2021 and 2022 right before CC termination at 0‐ to 10‐cm, 10‐ to 20‐cm, and 20‐ to 30‐cm depths. Results showed that, during 2021 and 2022, BD was 18% and 14% higher, respectively, under NC compared with CC management, while Ksat was 2.2 and 1.9 times higher, respectively, under CC compared with NC management. Further, the non‐capillary pores were significantly (p ≥ 0.05) higher under CC compared with NC management during both years of study. As a result, the majority of the total pores under CCs were filled with air, while the majority of total pores under NC management were filled with water. Therefore, this CC mix may be useful in lengthening the growing period during wet seasons by increasing air‐filled pore spaces.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3