Clone- and Gene-Specific Aberrations of Parental Imprinting in Human Induced Pluripotent Stem Cells

Author:

Pick Marjorie1,Stelzer Yonatan1,Bar-Nur Ori1,Mayshar Yoav1,Eden Amir2,Benvenisty Nissim1

Affiliation:

1. Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Edmund Safra Campus - Givat Ram, Jerusalem, Israel

2. Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University, Edmund Safra Campus - Givat Ram, Jerusalem, Israel

Abstract

Abstract Genomic imprinting is an epigenetic phenomenon whereby genes are expressed in a monoallelic manner, which is inherited either maternally or paternally. Expression of imprinted genes has been examined in human embryonic stem (ES) cells, and the cells show a substantial degree of genomic imprinting stability. Recently, human somatic cells were reprogrammed to a pluripotent state using various defined factors. These induced pluripotent stem (iPS) cells are thought to have a great potential for studying genetic diseases and to be a source of patient-specific stem cells. Thus, studying the expression of imprinted genes in these cells is important. We examined the allelic expression of various imprinted genes in several iPS cell lines and found polymorphisms in four genes. After analyzing parent-specific expression of these genes, we observed overall normal monoallelic expression in the iPS cell lines. However, we found biallelic expression of the H19 gene in one iPS cell line and biallelic expression of the KCNQ10T1 gene in another iPS cell line. We further analyzed the DNA methylation levels of the promoter region of the H19 gene and found that the cell line that showed biallelic expression had undergone extensive DNA demethylation. Additionally we studied the imprinting gene expression pattern of multiple human iPS cell lines via DNA microarray analyses and divided the pattern of expression into three groups: (a) genes that showed significantly stable levels of expression in iPS cells, (b) genes that showed a substantial degree of variability in expression in both human ES and iPS cells, and (c) genes that showed aberrant expression levels in some human iPS cell lines, as compared with human ES cells. In general, iPS cells have a rather stable expression of their imprinted genes. However, we found a significant number of cell lines with abnormal expression of imprinted genes, and thus we believe that imprinted genes should be examined for each cell line if it is to be used for studying genetic diseases or for the purpose of regenerative medicine. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

European Community

Israel Cancer Research Fund

Legacy Heritage Fund

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3