Affiliation:
1. Materials Research and Simulation Lab, Department of Electrical and Electronic Engineering International Islamic University Chittagong Chittagong Bangladesh
2. Department of Electrical and Electronic Engineering International Islamic University Chittagong Chittagong Bangladesh
3. Department of Physics Pabna University of Science and Technology Pabna Bangladesh
4. Department of Chemistry College of Science, King Khalid University Abha Saudi Arabia
5. Department of Arts and Sciences Bangladesh Army University of Science and Technology Nilphamari Bangladesh
6. Department of Computer Science and Engineering International Islamic University Chittagong Chittagong Bangladesh
Abstract
AbstractThis paper is the first to look at the structural, electronic, mechanical, optical, and thermodynamic properties of the ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn) half‐Heusler (HH) using DFT based first principles method. The lattice parameters that we have calculated are very similar to those obtained in prior investigations with theoretical and experimental data. The positive phonon dispersion curve confirm the dynamical stability of ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn). The electronic band structure and DOS confirmed that the studied materials ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn) are direct band gap semiconductors. The investigation also determined significant constants, including dielectric function, absorption, conductivity, reflectivity, refractive index, and loss function. These optical observations unveiled our compounds potential utilization in various electronic and optoelectronic device applications. The elastic constants were used to fulfill the Born criteria, confirming the mechanical stability and ductility of the solids ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn). The calculated elastic modulus revealed that our studied compounds are elastically anisotropic. Moreover, ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn) has a very low minimum thermal conductivity (Kmin), and a low Debye temperature (θD), which indicating their appropriateness for utilization in thermal barrier coating (TBC) applications. The Helmholtz free energy (F), internal energy (E), entropy (S), and specific heat capacity (Cv) are determined by calculations derived from the phonon density of states.