Novel tools for early detection of a global aquatic invasive, the zebra mussel Dreissena polymorpha

Author:

Ardura Alba1,Zaiko Anastasija23,Borrell Yaisel J.4,Samuiloviene Aurelija2,Garcia‐Vazquez Eva4

Affiliation:

1. USR3278‐CRIOBE‐CNRS‐EPHE, Laboratoire d'excellence ‘CORAIL’ Université de Perpignan‐CBETM Perpignan France

2. Marine Science and Technology Centre Klaipeda University Klaipeda Lithuania

3. Coastal and Freshwater Group Cawthron Institute Nelson New Zealand

4. Department of Functional Biology University of Oviedo Oviedo Spain

Abstract

Abstract This study presents a species‐specific DNA‐based marker for detection of the zebra mussel Dreissena polymorpha, recognized as one of the worst invasive species worldwide. The marker was developed in silico and experimentally tested on environmental samples. Gel and capillary electrophoreses for visualization of the PCR products were compared. Marker specificity and sensitivity were assessed in vitro by cross‐amplifications and serial dilutions, respectively. The method allows detecting at least 0.7 ng of Dreissena DNA per μL and cross‐species amplification was not found in any case. Next‐generation sequencing (NGS) metabarcoding (PCR amplification and massive sequencing of a DNA barcode) was used as an independent method for verifying presence of Dreissena DNA molecules in environmental plankton samples collected from the south‐eastern Baltic Sea. The consistency between NGS results reporting presence of Dreissena and positive PCR amplification of the marker from the plankton samples confirmed the efficacy of this highly reproducible, fast, cheap and technically easy method. Copyright © 2016 John Wiley & Sons, Ltd.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3