Enhanced Modulation Bandwidth by Integrating 2D Semiconductor and Quantum Dots for Visible Light Communication

Author:

Konthoujam James Singh12ORCID,Lin Yen-Shou12,Pai Yi-Hua2,Chang Chiao-Yun13,Zhang Yu-Wei14,Lin Shih-Yen14,Kuo Hao-Chung12,Shih Min-Hsiung125ORCID

Affiliation:

1. Research Center for Applied Sciences (RCAS) Academia Sinica Taipei 11529 Taiwan

2. Department of Photonics and Institute of Electro-Optical Engineering College of Electrical and Computer Engineering National Yang Ming Chiao Tung University (NYCU) Hsinchu 30010 Taiwan

3. Department of Electrical Engineering National Taiwan Ocean University (NTOU) Keelung 20224 Taiwan

4. Graduate Institute of Electronics Engineering National Taiwan University (NTU) Taipei 10617 Taiwan

5. Department of Photonics National Sun Yat-sen University (NSYSU) Kaohsiung 80424 Taiwan

Abstract

Light‐emitting devices present a tremendous potential for visible light communication (VLC) due to their dual functionality as both communication and lighting devices. Herein this study, the significant enhancement in VLC modulation bandwidth by integrating two‐dimensional (2D) semiconductor and quantum dots (QDs) emitter is reported. Generally, the modulation bandwidth of CdSe‐based QDs is limited to only less than 25 MHz; however, with the proposed hybrid emitter, a maximum modulation bandwidth of 130 MHz for CdSe/ZnS QDs emitter is able to be achieved. The WSe2 monolayer is integrated into an Au–nanorod–decorated CdSe/ZnS QDs emitter to achieve high modulation performance. The modulation bandwidth of the hybrid QD–Au–WSe2 emitter (130 MHz) is found to be higher than those of the pristine QDs and QD–WSe2 heterostructure without Au nanorods (79 and 91 MHz, respectively). A significant increase is observed in the transition rate of QDs excitons when they are integrated with Au nanorods and WSe2 monolayer, which is substantiated by a reduction in average carrier lifetime from time‐resolved photoluminescence analysis. This approach and the findings open an opportunity to apply 2D semiconductors into the next‐generation miniature VLC devices, for high‐speed optical communications.

Funder

Academia Sinica

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3