Optical Signatures of Phosphorene Chemical Evolvement in Liquid Environment

Author:

Yan Shancheng12,Wang Xi13,Zhou Fei1,Liu Hao2,Lou Shuai1,Lin Shuren1,Shi Yi4,Yao Jie15ORCID

Affiliation:

1. Department of Materials Science and Engineering University of California Berkeley CA 94720 USA

2. School of Integrated Circuit Science and Engineering Nanjing University of Posts and Telecommunications Nanjing 210023 China

3. Department of Materials Science and Engineering University of Delaware Newark DE 19716 USA

4. School of Electronic Science and Engineering Nanjing University Nanjing 210093 China

5. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Abstract

Phosphorene possesses a unique combination of physical and chemical properties, including tunable direct bandgap, anisotropic electronic and optical properties. However, application of phosphorene is hampered by its fast degradation under ambient conditions. It is believed that H2O and O2 play key roles in the instability of phosphorene, but their exact contributions have not yet been completely understood in experiment. Herein, a technique of probing the mechanism of phosphorene oxidation through the evolvement of its photoluminescence spectra in a liquid suspension is introduced. With the addition of H2O2, the photoluminescence intensity of the suspension surprisingly increases, indicating a passivation effect due to the formation of phosphorene oxide, which is also verified by Raman spectroscopy. In contrast, direct addition of H2O leads to irreversible and rapid degradation as shown by the quenching of photoluminescence. Furthermore, monolayer phosphorene suspension photoluminescence at 2.17 eV is obtained by completely eliminating effects from contaminations, substrate strain, dielectric substrate, and oxidation of samples. Solvent protection in combination with the optical probing method provides an effective approach in investigating the chemistry of active materials like phosphorene. Phosphorene has great potential in the range of sensing applications including high‐resolution H2O2 and humidity sensors.

Funder

Samsung Advanced Institute of Technology

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3