Enabling Efficient Mid‐Infrared Luminescence of Tm3+ in a Single Core–Shell Nanocrystal through Erbium Sublattice

Author:

Sheng Wang1,Yan Long1,Tan Yueying1,Zhao Yu1,Huang Haozhang1,Zhou Bo1ORCID

Affiliation:

1. State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices South China University of Technology Guangzhou 510641 China

Abstract

Mid‐infrared luminescence at around 1.8 μm has shown great potential in many frontier photonic fields. However, how to realize the 1.8 μm emission of Tm3+ with multiple pump wavelengths and in particular in nanosized hosts has remained a challenge so far. Herein, an erbium sublattice–based core–shell nanostructure is proposed to achieve the multiwavelength excitable mid‐infrared emission of Tm3+ at around 1.8 μm from its 3F4 → 3H6 transition. The core–shell engineering and cross‐relaxation help to improve the population of Er3+ at its 4I13/2 energy level and subsequent energy transfer to Tm3+ (3F4) for its efficient 1.8 μm emission upon 808, 980, and 1530 nm excitations. The modulation of energy‐transfer channels by codoping other rare‐earth ions shows that introducing a small amount of Ce3+ into the erbium sublattice can enhance the 1.8 μm emission of Tm3+ through favorable cross‐relaxation processes. Moreover, the 1.8 μm emission is further significantly enhanced by designing a core–shell–shell nanostructure with a NaYF4:Yb‐sensitizing interlayer, which is able to maximize the absorption of 980 nm excitation energy. These results provide a new conceptual nanosized model for mid‐infrared luminescent materials toward infrared biophotonics and microlasers.

Funder

National Natural Science Foundation of China

South China University of Technology

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3