Toward more reliable measurement procedures of perovskite‐silicon tandem solar cells: The role of transient device effects and measurement conditions

Author:

Messmer Christoph12ORCID,Chojniak David2ORCID,Bett Alexander J.2ORCID,Reichmuth S. Kasimir12ORCID,Hohl‐Ebinger Jochen2,Bivour Martin2,Hermle Martin2,Schön Jonas12ORCID,Schubert Martin C.2,Glunz Stefan W.12ORCID

Affiliation:

1. Chair for Photovoltaic Energy Conversion, Department of Sustainable Systems Engineering (INATECH) University of Freiburg Freiburg Germany

2. Fraunhofer Institute for Solar Energy Systems ISE Freiburg Germany

Abstract

AbstractPerovskite‐silicon (Pero‐Si) tandem solar cells have made remarkable progress in recent years, achieving certified cell efficiencies of up to 33.9%. However, accurately measuring the efficiency and current density‐voltage (JV) curves of these devices poses various challenges including the presence of mobile ions within the perovskite absorber that lead to short‐ and long‐term transient effects. Consequently, both the measurement setup and the preconditioning of the device significantly affect measurement results. This study focuses on enhancing the reliability and comparability of JV and other efficiency measurements for Pero‐Si tandem devices through a systematic analysis of the influence of mobile ions, preconditioning and measurement conditions. For the first time, a full opto‐electrical simulation model for Pero‐Si tandem devices is presented in Sentaurus TCAD, which includes the drift‐diffusion of anions and cations and is therefore able to describe short‐ and long‐term transient device effects in state‐of‐the‐art Pero‐Si tandem cells. Experimental validation and evidence are given by comparison to in‐house Pero‐Si tandem cells, as well as Pero‐Si mini modules from Oxford PV. We analyze by simulation and experiment how the cell preconditioning at different preconditioning voltages and times impacts the resulting measured tandem efficiency, as well as impact of JV scan times for the measured hysteresis in Pero‐Si tandem devices. Furthermore, we demonstrate the impact of current‐mismatching conditions on the measured hysteresis of the Pero‐Si tandem device and the need of correct spectral irradiance settings during measurements. We showcase that even a very slight variation in short‐circuit current density (jsc) around the current‐matching point leads to significantly different hysteresis behaviors. With aid of our simulation model, we could attribute this phenomenon to a reverse/forward biasing of the perovskite sub‐cell impacting the ion drift depending on the current‐limiting sub‐cell of the tandem device. Therefore, it is sensible to be aware of the current limiting sub‐cell for the comparison of the hysteresis susceptibility of different Pero‐Si tandem devices. This study strongly underscores the importance of including the preconditioning and measurement conditions when reporting Pero‐Si tandem efficiencies. The findings highlight the urgent need for standardization in the field.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3