Synergistic intrafibrillar/extrafibrillar mineralization of collagen fibrils and scaffolds enhanced by introducing polyacrylamide to PILP for osteogenic differentiation

Author:

Liu Chengde12,Jiang Luyao12,Du Wanting12,Cheng Xitong12,Zhao Zheng12,Wang Jinyan12,Jian Xigao3ORCID

Affiliation:

1. State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian Liaoning China

2. Department of Polymer Science & Engineering Dalian University of Technology Dalian Liaoning China

3. Liaoning Province Engineering Research Centre of High‐Performance Resins Dalian Liaoning China

Abstract

AbstractMineralization can help improve the mechanical properties and degradation rates of collagen scaffolds while ensuring good biocompatibility, thereby providing a suitable microenvironment for osteogenic differentiation. Intrafibrillar/extrafibrillar mineralization of collagen is promoted by polymer‐induced liquid precursors (PILP). In this study, polyacrylamide (PAM) was introduced to PILP which synergistically mineralized collagen scaffold intrafibrillarly and extrafibrillarly. PAM and polyacrylic acid (PAA) can stabilize the amorphous calcium phosphate (ACP), to form a PILP of PAM and PAA/ACP. As a control, another scaffold material was formed using the conventional mineralization method, that is, soaking collagen in a simulated body fluid. Collagen mineralization was characterized using SEM and TEM. After 7 days of mineralization with PILP, intrafibrillar crystallization of collagen was significantly higher than that in the control group, and the stiffness and modulus of this scaffold material significantly increased. Cellular experiment results indicated that the PILP‐mineralized collagen scaffold was biocompatible and promoted the osteogenic differentiation of MC3T3‐E1 pre‐osteoblasts. Biomimetic mineralization by PILP will assist the fabrication of mineralized collagen scaffold for bone repair applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3