Effect of wettability on the void formation during liquid infusion into fibers

Author:

Turner Jared1,Lippert Daniel2,Seo Dongjin2,Grasinger Matthew3,George Andy1ORCID

Affiliation:

1. Department of Manufacturing Engineering Brigham Young University Provo UT USA

2. Department of Chemical Engineering Brigham Young University Provo UT USA

3. Polymer Matrix Composites Group Air Force Research Laboratory Dayton OH USA

Abstract

AbstractLiquid composite molding (LCM) is a promising option for low‐cost manufacturing of high‐performance composites compared to traditional prepreg‐autoclave methods. Void formation may be the most significant roadblock to such adaptation of LCM. In this article, the hypothesis that higher wettability, that is, lower contact angles of liquid on solids, would lead to lower void content for LCM is tested. First, a theory that calculates the energy required to form a bubble with varying contact angles is formulated by considering interfacial energy differences of a system with and without it. To experimentally prove this hypothesis, six different carbon fiber reinforcement samples were prepared each with a different fiber surface treatment. The wettability from the surface treatments was evaluated with contact angle measurements based on capillary rise between two fiber yarns. Void formation in situ during infusion was evaluated by a series of 1D infusion experiments using the same six surface modifications. Of the six samples, the reinforcements coated with fluorinated alkane and aminosilane showed the highest wettability and lowest void content, confirming that a lower contact angle can reduce the formation of voids during the infusion process.Highlights Higher wettability was correlated with less bubble (void) formation. Theoretical model and LCM experimental confirmation. Various surface modifications of carbon fibers tested. Potential application: enhancement of properties from LCM manufactured parts.

Funder

Air Force Research Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3