Data‐Driven Battery Characterization and Prognosis: Recent Progress, Challenges, and Prospects

Author:

Ji Shanling1,Zhu Jianxiong12ORCID,Yang Yaxin1,dos Reis Gonçalo3,Zhang Zhisheng1

Affiliation:

1. School of Mechanical Engineering Southeast University Nanjing Jiangsu 211189 China

2. State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China

3. School of Mathematics University of Edinburgh JCMB Peter Guthrie Tait Road Edinburgh EH9 3FD UK

Abstract

AbstractBattery characterization and prognosis are essential for analyzing underlying electrochemical mechanisms and ensuring safe operation, especially with the assistance of superior data‐driven artificial intelligence systems. This review provides a unique perspective on recent progress in data‐driven battery characterization and prognosis methods. First, recent informative image characterization and impedance spectrum as well as high‐throughput screening approaches on revealing battery electrochemical mechanisms at multiple scales are summarized. Thereafter, battery prognosis tasks and strategies are described, with the comparison of various physics‐informed modeling strategies. Considering unlocking mechanisms from tremendous battery data, the dominant role of physics‐informed interpretable learning in accelerating energy device development is presented. Finally, challenges and prospects on data‐driven characterization and prognosis are discussed toward accelerating energy device development with much‐enhanced electrochemical transparency and generalization. This review is hoped to supply new ideas and inspirations to the next‐generation battery development.

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3