Recent Advances in MXene‐Based Fibers: Fabrication, Performance, and Application

Author:

Yang Mengdan1,Lou Huiqing1,Kong Xiaobing2,Pang Rui1,Zhang Ding1,Meng Weixue1,Li Meng1,Huang Xinguang1,Zhang Shipeng1,Shang Yuanyuan1ORCID,Cao Anyuan2

Affiliation:

1. Key Laboratory of Material Physics Ministry of Education School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China

2. School of Materials Science and Engineering Peking University Beijing 100871 P. R. China

Abstract

AbstractTwo‐dimensional transition metal carbide/nitrides (MXenes) have recently received extensive attention due to their diverse material types and versatile structures, large‐scale production, and excellent properties. MXene sheets possess abundant hydrophilic functional groups on their surface, which enable them to be assembled into macroscopic fibers or compounded with other functional materials to produce composite fibers. This review aims to provide a comprehensive analysis of MXene fibers in terms of their fabrication, structure, properties, and recent applications as flexible and wearable electronics. The review will discuss the principles of different methods used to synthesize MXene fibers and analyze the characteristics of the as‐synthesized fibers, with a particular focus on the wet spinning method. The fundamental relationships between the microstructure of MXene fibers and their resulting mechanical and electrical properties will be explored. Furthermore, the review will elaborate on the progress made in MXene‐based fibers in the rapidly growing field of wearable electronics applications, provide insights into future development of MXene fiber materials and propose solutions to the challenges facing practical applications.

Funder

National Natural Science Foundation of China

Foundation of Henan Educational Committee

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3