Targeted Protein Fate Modulating Functional Microunits Promotes Intervertebral Fusion

Author:

Zheng Jiancheng1,Zhao Jian2,Li Cuidi1,Zhang Fangke1,Saiding Qimanguli1,Zhang Xingkai1,Wang Guojun2,Qi Jin1,Cui Wenguo1ORCID,Deng Lianfu1

Affiliation:

1. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China

2. Department of Neurosurgery The Affiliated Taian City Central Hospital of Qingdao University Taian Shandong 271000 China

Abstract

AbstractStable regulation of protein fate is a prerequisite for successful bone tissue repair. As a ubiquitin‐specific protease (USP), USP26 can stabilize the protein fate of β‐catenin to promote the osteogenic activity of mesenchymal cells (BMSCs) and significantly increased bone regeneration in bone defects in aged mice. However, direct transfection of Usp26 in vivo is inefficient. Therefore, improving the efficient expression of USP26 in target cells is the key to promoting bone tissue repair. Herein, 3D printing combined with microfluidic technology is applied to construct a functional microunit (protein fate regulating functional microunit, denoted as PFFM), which includes GelMA microspheres loaded with BMSCs overexpressing Usp26 and seeded into PCL 3D printing scaffolds. The PFFM provides a microenvironment for BMSCs, significantly promotes adhesion, and ensures cell activity and Usp26 supplementation that stabilizes β‐catenin protein significantly facilitates BMSCs to express osteogenic phenotypes. In vivo experiments have shown that PFFM effectively accelerates intervertebral bone fusion. Therefore, PFFM can provide new ideas and alternatives for using USP26 for intervertebral fusion and other hard‐to‐repair bone defect diseases and is expected to provide clinical translational potential in future treatments.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3