Surface‐Enhanced Raman Scattering Sensors Employing a Nanoparticle‐On‐Liquid‐Mirror (NPoLM) Architecture

Author:

Datta Shreyan1,Vasini Shoaib1,Miao Xianglong1,Liu Peter Q.1ORCID

Affiliation:

1. Department of Electrical Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA

Abstract

AbstractSurface‐enhanced Raman scattering (SERS) sensors typically employ nanophotonic structures that support high‐field confinement and enhancement in hotspots to increase the Raman scattering from target molecules by orders of magnitude. In general, high field and SERS enhancement can be achieved by reducing the critical dimensions and mode volumes of the hotspots to nanoscale. To this end, a multitude of SERS sensors employing photonic structures with nanometric hotspots have been demonstrated. However, delivering analyte molecules into nanometric hotspots is challenging, and the trade‐off between field confinement/enhancement and analyte delivery efficiency is a critical limiting factor for the performance of many nanophotonic SERS sensors. Here, a new type of SERS sensor employing solid‐metal nanoparticles and bulk liquid metal is demonstrated to form nanophotonic resonators with a nanoparticle‐on‐liquid‐mirror (NPoLM) architecture, which effectively resolves this trade‐off. In particular, this unconventional sensor architecture allows for the convenient formation of nanometric hotspots by introducing liquid metal after analyte molecules are efficiently delivered to the surface of gold nanoparticles. In addition, a cost‐effective and reliable process is developed to produce gold nanoparticles on a substrate suitable for forming NPoLM structures. These NPoLM structures achieve two orders of magnitude higher SERS signals than the gold nanoparticles alone.

Funder

National Science Foundation

Directorate for Engineering

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3