SIRT6 Regulates Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells Partially via Suppressing the Nuclear Factor-κB Signaling Pathway

Author:

Sun Hualing1,Wu Yanru1,Fu Dongjie1,Liu Yinchen1,Huang Cui1

Affiliation:

1. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University, Wuhan, Hubei, People’s Republic of China

Abstract

Abstract Sirtuin 6 (SIRT6) is a NAD-dependent deacetylase involved in lifespan regulation. To evaluate the effect of SIRT6 on osteogenesis, rat bone marrow mesenchymal stem cells (rBMSCs) with enhanced or reduced SIRT6 function were developed. We observed that SIRT6 knockdown significantly reduced the mRNA levels of several key osteogenic markers in vitro, including alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), and osteocalcin, while overexpression of SIRT6 enhanced their expression. Additionally, SIRT6 knockdown activated nuclear factor-κB (NF-κB) transcriptional activity and upregulated the expression of acetyl-NF-κB p65 (Lys310). The decreased osteogenic differentiation ability of rBMSCs could be partially rescued by the addition of NF-κB inhibitor BAY 11–7082. Furthermore, SIRT6 overexpression in rBMSCs combined with the use of collagen/chitosan/hydroxyapatite scaffold could significantly boost new bone formation in rat cranial critical-sized defects, as determined by microcomputed tomography and histological examination. These data confirm that SIRT6 is mainly located in the nuclei of rBMSCs and plays an essential role in their normal osteogenic differentiation, partly by suppressing NF-κB signaling. Stem Cells  2014;32:1943–1955

Funder

National Natural Science Foundation of China

Fundamental Research Fund for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference62 articles.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3