Morphology Evolution of NiFe Layered Double‐Hydroxide Nanoflower Clusters from Nanosheets: Controllable Structure–Performance Relation for Green Energy Storage

Author:

Li Yanxia1,He Geping12ORCID,HuangFu Huijun3,Mi Yuanmei1,Zhang Huimin1,Zheng Donghao1,Wu Minye1,Yuan Hudie1

Affiliation:

1. College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an 710055 China

2. The State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology Wu'han 430081 China

3. Science and Technology Department Shaanxi Chemical Research Institute Co.LTD. Xi'an 710069 China

Abstract

NiFe‐layered double hydroxide (NiFe‐LDH) as electrode materials for supercapacitors are successfully prepared by green and one‐step hydrothermal method without template. The controllable structure–performance relation of NiFe‐LDH nanoflower clusters (NCs) for green energy storage is realized by regulating reaction time. The morphology evolution of NiFe‐LDH is elucidated. NiFe‐LDH‐24 h offers a unique NC structure and has specific capacitance of 635.8 F g−1 at 1 A g−1, which is larger than one of the reported pure NiFe‐LDHs so far. The improved electrochemical performance of NiFe‐LDH‐24 h NCs is due to its unique structure and synergistic effect between components that cause the larger specific surface area and more electroactive sites for Faradic reaction. The reaction kinetics reveals the electrochemical energy storage mechanism of the NiFe‐LDH‐24 h NCs. The energy storage is contributed by diffusion and surface capacitance. The electrochemical performance of NiFe‐LDH‐24 h NCs is further modified for the first time by doping F, and the specific capacitance of F‐doped NiFe‐LDH‐24 h NCs (1942 F g−1) is increased by 3 times higher than that of NiFe‐LDH‐24 h NCs. This work provides a more solid theoretical basis for green energy storage through morphology control and doping modification strategies.

Publisher

Wiley

Subject

General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3