Evaluation and control of energy‐efficient processes for separating epichlorohydrin‐oriented quaternary system

Author:

Qi Fuqiang12ORCID,Yang Junling1,Zhang Zhentao1,Wu Zhenqun1,Ren Qiyue13,Zhang Huafu1,Li Yanan1,Zhang Yu1

Affiliation:

1. Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. Beijing Institute of Petrochemical Technology Beijing China

Abstract

AbstractBACKGROUNDThe direct epoxidation of allyl chloride is a clean and efficient synthesis method for producing epichlorohydrin (ECH), which is a crucial organic intermediate widely used in the fields of renewable energy and aerospace. However, the presence of multiple azeotropes in the synthesized product using this method complicates the separation process and results in high energy consumption. To efficiently separate high‐purity ECH, this paper investigates and analyzes three separation schemes based on phase‐equilibrium analysis: hybrid extractive distillation (HED), pressure swing distillation (PSD) and three‐column batch distillation (TCBD).RESULTSThe operating parameters of the three separation processes are optimized by the sequential iterative optimization method such that the minimum total annual cost can reach $493 491 yr−1. The thermal integration method is used for process energy‐saving optimization, and the total annual cost can be further reduced by 6.9%. In addition, a comprehensive evaluation based on economic, energy, environmental and exergy analysis is conducted, and reveals that the TCBD process with thermal integration is optimal. A control structure is designed for the TCBD process to enhance its robustness such that the purity of ECH remains above 99.9 mol% under ±10% disturbances in feed flowrate and composition.CONCLUSIONSCompared with the HED and PSD processes, the TCBD process has better economic and environmental benefits, and its control structure can effectively resist disturbances. It is reasonable to believe that the TCBD process can be an excellent solution for the industrial production of ECH. © 2024 Society of Chemical Industry (SCI).

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3