Curing and thermal degradation behavior of epoxy‐based vitrimers

Author:

Yang Shuguang1,Zhang Shiheng2,Luo Fubin1ORCID,Li Hongzhou1,Xiao Fei3

Affiliation:

1. Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences Fujian Normal University Fuzhou People's Republic of China

2. Jiangmen Laboratory of Carbon Science and Technology Jiangmen People's Republic of China

3. School of Safety Science and Emergency Management Wuhan University of Technology Wuhan People's Republic of China

Abstract

AbstractEpoxy with associative covalent adaptable networks (CANs), called vitrimer, is reported to be promising to realize the recyclable utilization. The typical epoxy vitrimers are synthesized from diglycidyl ether of bisphenol A and dicarboxylic catalyzed by triazabicyclodecene (TBD). The study on the curing and thermal degradation behavior facilitates in‐depth understanding of the associative CANs. In this work, the effect of TBD on the curing and thermal degradation behavior is investigated via curing kinetics and thermal degradation performance analysis. The results reveal that the activation energy of curing reaction is increased as the amount of TBD is increased. EST‐5 has an average activation energy of 70.1 kJ/mol, while EST‐15 reaches as high as 75.1 kJ/mol. Especially, when the conversion is up to 50%, the activation energy shows an obvious increment. In addition, it has been demonstrated that TBD accelerates the thermal degradation of cured networks at lower temperature and increases the amount of volatiles during thermal decomposition.

Funder

Beijing Technology and Business University

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3