Advanced impedance mismatch technique for detecting faults in photovoltaic systems

Author:

Lamdihine NajwaORCID,Ouassaid Mohammed1

Affiliation:

1. Electrical Department, Mohammadia School of Engineers Mohammed V University in Rabat Rabat Morocco

Abstract

AbstractThis paper presents a comprehensive exploration of the Advanced Impedance Mismatch Technique (AIMT), a novel approach designed for the accurate detection of simultaneous and varied faults within photovoltaic (PV) systems. This investigation integrates a spectrum of fault detection strategies, pinpointing reflectometry as a notably effective tool. Despite its utility, conventional reflectometry applications face critical constraints, notably the limitation to identify only the primary fault location within a PV array and the inability to distinguish between different fault types. This work introduces an innovative mathematical model that estimates the impedance of PV modules, enhancing the reflectometry method to enable the precise identification and localization of multiple defective modules within a string. The proposed technique exhibits a remarkable sensitivity to detect slight impedance differences between a functional PV string and one with defective modules. The validity of the AIMT's mathematical model is corroborated through simulation experiments on a string of seven PV modules afflicted with multiple simultaneous faults. These experiments rigorously evaluate the technique's accuracy in pinpointing the locations of defective modules within a PV string. The outcomes of our proposed ‐times faster AIMT reveal a strong concordance between the simulated reflective signals and the impedance values forecasted by the model, highlighting the proposed method's proficiency in the detailed detection and diagnosis of progressive faults within PV systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3