Neferine protected cardiomyocytes against hypoxia/oxygenation injury through SIRT1/Nrf2/HO‐1 signaling

Author:

Lu Cheng1,Jiang Bing1,Xu Jie1,Zhang Xuan1,Jiang Nianxin1ORCID

Affiliation:

1. Department of Cardiology Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai China

Abstract

AbstractAcute myocardial infarction is regarded as myocardial necrosis resulting from myocardial ischemia/reperfusion (I/R) damage and retains a major cause of mortality. Neferine, which was extracted from the green embryos of mature seeds of Nelumbo nucifera Gaertn., has been reported to possess a broad range of biological activities. However, its underlying mechanism on the protective effect of I/R has not been fully clarified. A hypoxia/reoxygenation (H/R) model with H9c2 cells closely simulating myocardial I/R injury was used as a cellular model. This study intended to research the effects and mechanism underlying neferine on H9c2 cells in response to H/R stimulation. Cell Counting Kit‐8 and lactate dehydrogenase (LDH) release assays were employed to measure cell viability and LDH, respectively. Apoptosis and reactive oxygen species (ROS) were determined by flow cytometry analysis. Oxidative stress was evaluated by detecting malondialdehyde, superoxide dismutase, and catalase. Mitochondrial function was assessed by mitochondrial membrane potential, ATP content, and mitochondrial ROS. Western blot analysis was performed to examine the expression of related proteins. The results showed that hypoxia/reoxygenation (H/R)‐induced cell damage, all of which were distinctly reversed by neferine. Moreover, we observed that neferine inhibited oxidative stress and mitochondrial dysfunction induced by H/R in H9c2 that were concomitant with increased sirtuin‐1 (SITR1), nuclear factor erythroid 2‐related factor 2 (Nrf2), and heme oxygenase‐1 expression. On the contrary, silencing the SIRT1 gene with its small interferingRNA eliminated the beneficial effects of neferine. It is concluded that neferine preconditioning attenuated H/R‐induced cardiac damage via suppressing apoptosis, oxidative stress, and mitochondrial dysfunction, which may be partially ascribed to the activation of SIRT1/Nrf2 signaling pathway.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3