Accurate cell type annotation for single‐cell chromatin accessibility data via contrastive learning and reference guidance

Author:

Li Siyu1,Tang Songming2,Wang Yunchang2,Li Sijie2,Jia Yuhang1,Chen Shengquan2

Affiliation:

1. School of Statistics and Data Science Nankai University Tianjin China

2. School of Mathematical Sciences and LPMC Nankai University Tianjin China

Abstract

AbstractRecent advances in single‐cell chromatin accessibility sequencing (scCAS) technologies have resulted in new insights into the characterization of epigenomic heterogeneity and have increased the need for automatic cell type annotation. However, existing automatic annotation methods for scCAS data fail to incorporate the reference data and neglect novel cell types, which only exist in a test set. Here, we propose RAINBOW, a reference‐guided automatic annotation method based on the contrastive learning framework, which is capable of effectively identifying novel cell types in a test set. By utilizing contrastive learning and incorporating reference data, RAINBOW can effectively characterize the heterogeneity of cell types, thereby facilitating more accurate annotation. With extensive experiments on multiple scCAS datasets, we show the advantages of RAINBOW over state‐of‐the‐art methods in known and novel cell type annotation. We also verify the effectiveness of incorporating reference data during the training process. In addition, we demonstrate the robustness of RAINBOW to data sparsity and number of cell types. Furthermore, RAINBOW provides superior performance in newly sequenced data and can reveal biological implication in downstream analyses. All the results demonstrate the superior performance of RAINBOW in cell type annotation for scCAS data. We anticipate that RAINBOW will offer essential guidance and great assistance in scCAS data analysis. The source codes are available at the GitHub website (BioX‐NKU/RAINBOW).

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3