Significance of addition of carbon nanotubes and fly ash on the wear and frictional performance of aluminum metal matrix composites

Author:

Devadiga Udaya1,Fernandes Peter2,Buradi Abdulrajak3ORCID,Emma Addisu Frinjo4ORCID

Affiliation:

1. Department of Mechanical Engineering Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT) Mangalore India

2. Mechanical Engineering Alva's Institute of Engineering & Technology Moodbidri India

3. Mechanical Engineering Department Nitte Meenakshi Institute of Technology Bangalore Karnataka India

4. College of Engineering and Technology, School of Mechanical and Automotive Engineering Dilla University Dilla Ethiopia

Abstract

AbstractIn order to improve the wear and frictional behavior of the aluminum metal matrix composites, carbon nanotube, and fly ash were added as reinforcements. Powder metallurgy technique was used to fabricate the hybrid metal matrix composites. Experimentations were carried out using pin on disc type wear test rig. The analyzed experimental results showed that, in comparison to the pure aluminum and mono reinforcement combination, the wear loss and coefficient of friction of hybrid metal matrix composites were greatly reduced. It was noted that compared to pure aluminum wear loss was decreased to 89.58%, 86.97%, 83.3% by adding 0.25, 0.5, 0.75 wt% carbon nanotube (CNT), respectively. By the addition of 4, 8 and 16 wt% FA to pure Al wear loss was decreased to 83.85%, 89.58%, and 78.12%, respectively. It was also noted that compared to Al/8 wt% FA mono reinforced composites, wear loss was decreased to 77%, 71.26%, and 53.22% with the addition of 0.25, 0.5, 0.75 wt% CNT, respectively. With the addition of 4, 8, 16 wt% FA, wear loss decreased to 81%, 88%, and 75% over Al/0.25 wt% CNT composites, respectively. The microstructural study of the worn‐out surfaces revealed low abrasive and adhesive wear by the presence of carbon nanotubes and fly ash in aluminum metal matrix. The reinforcing mechanisms of the wear and frictional properties were also discussed.

Funder

NMAM Institute of Technology

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3