Indoor air quality in Kazakh households: Evaluating PM2.5 levels generated by cooking activities

Author:

Karaca Ferhat1,Guney Mert1,Agibayeva Akmaral1ORCID,Otesh Nurlan1,Kulimbet Mukhtar23,Glushkova Natalya23,Chang Yuefang4,Sekikawa Akira5,Davletov Kairat3

Affiliation:

1. Department of Civil and Environmental Engineering, The Environment & Resource Efficiency Cluster, School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan

2. Department of Epidemiology Biostatistics and Evidence‐based Medicine Al‐Farabi Kazakh National University Almaty Kazakhstan

3. Health Research Center Asfendiyarov Kazakh National Medical University Almaty Kazakhstan

4. Department of Neurosurgery, School of Medicine University of Pittsburgh Pittsburgh Pennsylvania USA

5. Department of Epidemiology, School of Public Health University of Pittsburgh Pittsburgh Pennsylvania USA

Abstract

AbstractThe present study introduces a concentration estimation model for indoor inhalable fine particles (PM2.5) during cooking activities in typical Kazakh houses, which are generally poorly ventilated with high emission levels. The aim of the present work is to identify factors influencing PM2.5 concentrations during cooking and elucidate the mechanisms underlying the build‐up and reduction of PM2.5 concentrations. These are achieved through a methodology that combines PM2.5 sampling, monitoring, and modeling to predict household PM2.5 levels and estimate daily concentrations. Specifically, USEPA's IAQX v1.1 was employed to simulate the one‐zone concept (kitchen) for concentrations related to cooking activities in several households. The results reveal that PM2.5 concentrations varied between 13 and 266 μg/m3 during cooking activities. Factors such as kitchen size, air exchange characteristics, and the type of food and cooking style were identified as important, influencing the observed concentrations. The model accurately captured concentration trends (R > 0.9). However, certain predictions tended to overestimate the measurements, attributing to inaccuracies in selecting air exchange and emission rates. Cooking activities contributed to household air pollutant (HAP) PM2.5 levels ranging from 9% to 94%. Notably, during the non‐heating period of the year (corresponding to the warmer half of the year), the impact of cooking became more significant and was identified as a major contributor to indoor PM2.5 concentrations. Conversely, during the heating period (i.e., the colder part of the year), outdoor PM levels and household ventilation practices played primary roles in regulating indoor air concentrations. This present study presents one of the initial efforts to assess household air pollutants in Central Asia, providing foundation and insights into the indoor air quality of Kazakh houses, where the understanding of indoor air quality remains limited. Future research recommendations include developing advanced models that account for individual activity patterns and specific house types for improved accuracy and representativeness.

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3