Orientation‐dependent mechanical responses in molybdenum‐rhenium alloys evaluated via micro‐pillars

Author:

Xu Hailong12ORCID,Huang Li2,Zhang Wen2,Liang Jing2,Gao Xuanqiao2,Li Jianfeng2

Affiliation:

1. Xi'an Jiao Tong University, HARCC, State Key Lab Mech Behav Mat Xi'an Shaanxi People's Republic of China

2. Northwest Institute for Nonferrous Metal Research Xi'an People's Republic of China

Abstract

AbstractTextures in molybdenum‐rhenium (Mo‐Re) alloys are inevitable during thermal fabrication. [110] and [100] are common orientations in Mo‐Re alloys and effect mechanical responses. However, orientation dependence of mechanical responses in Mo‐Re alloys is not quite clear yet. To clarity this problem, micro‐pillar compression tests are conducted in grains with orientation [100] and [110] separately. Orientation‐dependent compressive properties are found in Mo‐14Re and Mo‐42Re (wt.%), but are not found in Mo and Mo‐5Re, which may be attributed to activated multi‐slip planes as increased Re. Solid solution effect of Re not only relies on orientations, but also on Re contents. Softening effect occurs in both [100] and [110] Mo‐5Re. while, strong strengthening effect happens in [110] Mo‐14Re and Mo‐42Re. Our research clarifies that Mo‐Re alloys with [110] orientation/texture could be preferred to obtain good strengthening effect.

Funder

Xian Science and Technology Bureau

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3