On the importance of fundamental computational fluid dynamics toward a robust and reliable model of left atrial flows

Author:

Khalili Ehsan1,Daversin‐Catty Cécile2ORCID,Olivares Andy L.3ORCID,Mill Jordi3,Camara Oscar3,Valen‐Sendstad Kristian1ORCID

Affiliation:

1. Department of Computational Physiology Simula Research Laboratory Oslo Norway

2. Department of Numerical Analysis and Scientific Computing Simula Research Laboratory Oslo Norway

3. Department of Information and Communication Technologies Universitat Pompeu Fabra Barcelona Spain

Abstract

AbstractComputational fluid dynamics (CFD) studies of left atrial flows have reached a sophisticated level, for example, revealing plausible relationships between hemodynamics and stresses with atrial fibrillation. However, little focus has been on fundamental fluid modeling of LA flows. The purpose of this study was to investigate the spatiotemporal convergence, along with the differences between high‐ (HR) versus normal‐resolution/accuracy (NR) solution strategies, respectively. Rigid wall CFD simulations were conducted on 12 patient‐specific left atrial geometries obtained from computed tomography scans, utilizing a second‐order accurate and space/time‐centered solver. The convergence studies showed an average variability of around 30% and 55% for time averaged wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), and endothelial cell activation potential (ECAP), even between intermediate spatial and temporal resolutions, in the left atrium (LA) and left atrial appendage (LAA), respectively. The comparison between HR and NR simulations showed good correlation in the LA for WSS, RRT, and ECAP (), but not for OSI (). However, there were poor correlations in the LAA especially for OSI, RRT, and ECAP ( .55, .63, and .61, respectively), except for WSS (). The errors are comparable to differences previously reported with disease correlations. To robustly predict atrial hemodynamics and stresses, numerical resolutions of 10 M elements (i.e., .5 mm) and 10 k time‐steps per cycle seem necessary (i.e., one order of magnitude higher than normally used in both space and time). In conclusion, attention to fundamental numerical aspects is essential toward establishing a plausible, robust, and reliable model of LA flows.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3