Modelling the ecohydrological plasticity in soil hydraulic properties of Sphagnum mosses

Author:

McCarter Colin P. R.1ORCID,Golubev Vitaly2,Whittington Pete2ORCID

Affiliation:

1. Department of Biology, Chemistry, and Geography Nipissing University North Bay Ontario P1B 8L7 Canada

2. Department of Geography and Environment Brandon University Brandon Manitoba R7A 6A9 Canada

Abstract

AbstractSphagnum mosses are a keystone peatland species whose ecohydrology governs carbon sequestration processes in many peatlands. Globally, there are ~380 Sphagnum species that occupy a wide range of ecohydrological niches (microforms) based on their ability to grow at or above the water table, broadly grouped by hummock (furthest from water table), lawn, and hollow (closest to water table) microforms. The further from the water table a given species can grow is controlled by the ability to effectively retain and transmit water to the capitula (growing surface) during dry periods. However, Sphagnum species can have a relatively plastic ecohydrological niche, often occupying different niches (microforms) in different environments. We used numerical modelling parameterized by previous field and laboratory studies to compare the hydrological function between Sphagnum hummock, lawn, and hollow microforms. We determined (a) how two different organizations of a hummock of Sphagnum fuscum and (b) a lawn or hollow of S. magellanicum (S. divinum/S. medium) or S. rubellum differed between two different overarching climates (sub‐humid boreal and humid temperate). The hydrological function, expressed as the cumulative water fluxes, was similar between species and ecohydrological microform (water table position) when water was plentiful, despite differences in soil hydraulic properties of the same species, but began to diverge during a prolonged simulated dry period (30‐day drought). These results suggest a single species of Sphagnum moss can exhibit a wide range of soil hydraulic properties (i.e., sphagnum morphology) but have essentially the same consequential hydrology. Only the S. fuscum from the sub‐humid climate was hydrologically stressed enough to show differences in the simulated evaporation rates. This study highlights the need for more physical research to determine the sensitivity of Sphagnum spp.'s soil hydraulic properties to overarching hydroclimatic factors so that we can more effectively incorporate these processes into large‐scale numerical modelling efforts.

Funder

Canada Research Chairs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3