Atomic‐scale strain analysis for advanced Si/SiGe heterostructure by using transmission electron microscopy

Author:

Li Lan1,Bi Ran2,Dong Zuoyuan1,Ye Changqing1,Xie Jing1,Wang Chaolun1,Li Xiaomei1,Pey Kin‐Leong3,Li Ming2,Wu Xing1ORCID

Affiliation:

1. School of Integrated Circuits East China Normal University Shanghai China

2. School of Integrated Circuits Peking University Beijing China

3. Engineering Product Development Pillar Singapore University of Technology and Design Singapore Singapore

Abstract

AbstractThree‐dimensional stacked transistors based on Si/SiGe heterojunction are a potential candidate for future low‐power and high‐performance computing in integrated circuits. Observing and accurately measuring strain in Si/SiGe heterojunctions is critical to increasing carrier mobility and improving device performance. Transmission electron microscopy (TEM) with high spatial resolution and analytical capabilities provides technical support for atomic‐scale strain measurement and promotes significant progress in strain mapping technology. This paper reviews atomic‐scale strain analysis for advanced Si/SiGe heterostructure based on TEM techniques. Convergent‐beam electron diffraction, nano‐beam electron diffraction, dark‐field electron holography, and high‐resolution TEM with geometrical phase analysis, are comprehensively discussed in terms of spatial resolution, strain precision, field of view, reference position, and data processing. Also, the advantages and critical issues of these strain analysis methods based on the TEM technique are summarized, and the future direction of TEM techniques in the related areas is prospected.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3