Dark sides of artificial intelligence: The dangers of automated decision‐making in search engine advertising

Author:

Schultz Carsten D.1,Koch Christian1,Olbrich Rainer1

Affiliation:

1. Faculty of Business Administration and Economics University of Hagen Hagen Germany

Abstract

AbstractWith the growing use of artificial intelligence, search engine providers are increasingly pushing advertisers to use automated bidding strategies based on machine learning. Such automated decision‐making systems leave advertisers in the dark about the data being used and how they can influence the outcome of the decision‐making process. Previous literature on artificial intelligence lacks an understanding of the dangers related to artificially intelligent systems and their lack of transparency. In response, our paper addresses the inherent risks of the automated optimization of advertisers' bidding strategies in search engine advertising. The selected empirical case of a service company therefore demonstrates how data availability can trigger a long‐term decline in advertising performance and how search engine advertising performance metrics develop before and after an event of data scarcity. Based on data collected for 525 days, difference‐in‐differences analysis shows that the algorithmic approach has a considerable and lasting negative impact on advertising performance. Furthermore, the empirical case indicates that self‐regulated learning can initialize a downward spiral that gradually impairs advertising performance. Thus, the aim of this study is to increase awareness regarding automated decision‐making dangers in search engine advertising and help advertisers take preventive measures to reduce the risks of algorithm missteps.

Publisher

Wiley

Subject

Library and Information Sciences,Information Systems and Management,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3