Plugging the Leak of Nanoparticles by Interfacial Polymer Adsorption Enables an Efficient Protein and Peptide Encapsulation

Author:

Huo Qingqing12ORCID,Gao Yue12ORCID,Wu Wenbo12ORCID,Hu Shuai12ORCID,Dong Enpeng12ORCID,Zhang Yiyang12ORCID,Tian Yuling12ORCID,Huang Yang12ORCID,Quan Peng3,Liu Dongfei124ORCID

Affiliation:

1. State Key Laboratory of Natural Medicines Department of Pharmaceutical Science China Pharmaceutical University Nanjing 210009 China

2. NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients China Pharmaceutical University Nanjing 210009 China

3. Department of Pharmaceutical Science School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016 China

4. Chongqing Innovation Institute China Pharmaceutical University Chongqing 401122 China

Abstract

AbstractEncapsulation is a promising technology to enhance the pharmacokinetic properties of proteins and peptides, particularly addressing their short half‐life. Despite its potential, this method has limitations, such as low encapsulation efficiency, a minimal mass fraction of therapeutic agents, and the potential loss of biological activity. In this study, the pivotal role of amphiphilic polymers in achieving efficient protein and peptide encapsulation is delved into. It is found that these polymers not only improve the solvation of cargo nanoparticles but also form a robust 3D polymer layer at the oil/water interface. This interfacial polymer barrier effectively minimizes the escape of proteins and peptides during the encapsulation process, achieving an impressive encapsulation efficiency of up to 99.8% for agents. Remarkably, the mass fraction of these therapeutic agents in the resultant microparticles exceed 59.9 wt.%. The microparticles prolonged payload release for 30 days both in vitro and in vivo, leading to heightened therapeutic efficacy in type 2 diabetic rats. Furthermore, the required amount of polymer for administration is reduced by a factor of 47.5, substantially mitigating inflammatory response at the injection site. In conclusion, the findings highlight the transformative potential of using interfacial polymer accumulation to encapsulate proteins and peptides.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3