Cutting Edge Use of Conductive Patterns in Nanocellulose‐Based Green Electronics

Author:

Ko Youngsang1,Kwon Goomin1,Choi Hojoon2,Lee Kangyun1,Jeon Youngho1,Lee Suji1,Kim Jeonghun2ORCID,You Jungmok1

Affiliation:

1. Department of Plant & Environmental New Resources and Graduate School of Green‐Bio Science College of Life Sciences Kyung Hee University 1732 Deogyeong‐daero, Giheung‐gu Yongin‐si Gyeonggi‐do 17104 South Korea

2. Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei‐ro, Seodaemun‐gu Seoul 03722 South Korea

Abstract

AbstractGreen electronics made from degradable materials have recently attracted special attention, because electronic waste (e‐waste) represents a serious threat to the environment and to human health worldwide. Among the novel materials used for sustainable technologies, nanocelluloses containing at least 1D in the nanoscale range (1–100 nm) have been widely exploited for various industrial applications owing to their inherent properties, such as biodegradability, mechanical strength, thermal stability, and optical transparency. This review highlights recent advances in research on the development of patterns for conductive material on nanocellulose substrates for use in high‐performance green electronics. The advantages of nanocellulose substrates compared to conventional paper substrates for advanced green electronics are discussed. Importantly, this review emphasizes various fabrication strategies for producing conductive patterns on different types of nanocellulose‐based substrates, such as cellulose nanofiber (CNF), (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl(TEMPO)‐oxidized CNF, regenerated cellulose, and bacterial cellulose. In the latter part of this review, emerging engineering applications for green electronics such as circuits, transistors/antennas, sensors, energy storage systems, and electrochromic devices are further discussed.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3