Affiliation:
1. State Key Laboratory of Chemistry and Utilization of Carbon‐Based Energy Resources College of Chemistry Xinjiang University Urumqi 830017 China
2. College of Chemistry and Molecular Sciences Hubei Key Laboratory of Electrochemical Power Sources Wuhan University Wuhan 430072 China
Abstract
AbstractFe‐based sulfate materials have attracted much attention in the cathode of sodium‐ion batteries (SIBs) due to their low cost and high operating voltage, as well as possessing application prospects comparable to hard carbon in the anode based on Fe0/Fe2+/Fe3+ redox properties. However, the poor conductivity and the tendency to agglomerate have limited their further application. Herein, the study constructs a dual‐conductive structure that the Na2.31Fe1.72(SO4)3 particles with amorphous carbon in situ‐coated embedded in ketjen black (KB) conducting carbon networks (NFS/KB) via a solid phase ball‐milling strategy, which effectively enhanced inherent conductivity and electron transfer efficiency among particles of the Fe‐based sulphate. The NFS/KB can provide a reversible capacity of 92 mAh g−1 at 0.1 C and stable cycling stability at high current (85% retention after 500 cycles at 20 C) as cathode of SIBs. Surprisingly, as anode of SIBs, the NFS/KB delivers a rate performance (149 mAh g−1 at 10 C) that is superior to that of hard carbon. Notably, further application of the material to symmetric SIBs also achieves favorable results. This work effectively enhances the performance of Fe‐based sulphate materials in SIBs with a low‐cost carbon modification method, providing a new approach for the low‐cost symmetric SIBs.
Funder
Natural Science Foundation of Xinjiang Uygur Autonomous Region
Innovative Research Group Project of the National Natural Science Foundation of China