Self‐Assembled Gallium Sulfide (GaS) Heterostructures Enabling Efficient Water Splitting and Selective Ammonia Sensing

Author:

Boukhvalov Danil W.12,D'Olimpio Gianluca3,Dadiani Tsotne3,Sharma Jyayasi4,Elameen Ashraf Abdelrahman Assadig35,Zenone Stefano35,Rosmus Marcin6,Gürbulak Bekir7,Çepni Emir8,Llobet Eduard4,Magnano Elena9,Bondino Federica9,Duman Songül10,Politano Antonio3ORCID

Affiliation:

1. College of Science Institute of Materials Physics and Chemistry Nanjing Forestry University Nanjing 210037 P. R. China

2. Institute of Physics and Technology Satbayev University Ibragimov str. 11 Almaty 050032 Kazakhstan

3. Department of Physical and Chemical Sciences University of L'Aquila via Vetoio L'Aquila (AQ) 67100 Italy

4. Universitat Rovira i Virgili MINOS, Avda. Països Catalans, 26 Tarragona 43007 Spain

5. Department of Applied Science and Technology Polytechnic University of Turin Corso Castelfidardo, 39 Turin 10129 Italy

6. National Synchrotron Radiation Center SOLARIS Jagiellonian University Czerwone Maki 98 Krakow PL‐30392 Poland

7. Department of Physics Faculty of Sciences Atatürk University Erzurum 25240 Türkiye

8. Department of Electrical and Electronics Engineering Faculty of Engineering Atatürk University Erzurum 25240 Türkiye

9. Consiglio Nazionale delle Ricerche (CNR) ‐ Istituto Officina dei Materiali (IOM) Area Science Park S.S. 14 km 163.5 Trieste 34149 Italy

10. Basic Sciences Department Faculty of Sciences Erzurum Technical University Erzurum 25050 Türkiye

Abstract

AbstractHerein, a comprehensive validation of the catalytic and sensing capabilities of gallium sulfide (GaS). This study focuses on the self‐assembled heterostructure formed by GaS with its native oxide, revealing novel insights into the crucial role of defects, strain, and surface oxide phases in optimizing the behavior of 2D materials for catalytic and sensing applications. Although the energy barrier for water dissociation on pristine GaS surfaces is prohibitive (+419.3 kJ mol−1), surface sulfur vacancies considerably reduce this barrier, transforming defective GaS (GaSx) into an efficient catalyst for the hydrogen evolution reaction (HER) in alkaline media. Water dissociation is energetically favorable at room temperature on GaS0.96 surfaces (−147.6 kJ mol−1). Correspondingly, the differential free energy for HER on GaS0.96 in an alkaline medium is found to be −1.56 eV for the hydroxyl adsorption step and +1.28 eV for the desorption step, while all reaction steps are exothermic for its implementation as a catalyst for oxygen evolution reaction (OER). These theoretical models and surface‐science experiments confirm that exposure of GaS surfaces to ambient conditions leads to the inevitable formation of a self‐assembled nanoscale (≈3 nm thick) oxide skin. This native oxide layer stabilizes the surface and, moreover, it also significantly enhances its catalytic and sensing properties by providing additional active sites and improving charge transfer dynamics. The exceptional sensitivity (response of 18% at T = 150 °C) and selectivity for detecting ammonia (NH3) are attributed to both its high affinity for chemisorption and the significant charge‐transfer interactions that enhance the sensor response.

Funder

H2020 Marie Skłodowska-Curie Actions

Ministero dell'Università e della Ricerca

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3