Interfacial Engineering Using Covalent Organic Frameworks in Polymer Composites for High‐Temperature Electrostatic Energy Storage

Author:

Xie Zongliang12ORCID,Le Khoi13,Li He14ORCID,Pang Xi2ORCID,Xu Tianlei2ORCID,Altoé Virginia1ORCID,Klivansky Liana M.1,Wang Yunfei5ORCID,Huang Zhiyuan1,Shelton Steve W.1,Gu Xiaodan5ORCID,Liu Peng2ORCID,Peng Zongren2ORCID,Liu Yi14ORCID

Affiliation:

1. The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

2. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Shaanxi 710049 China

3. Department of Chemical and Biomolecular Engineering University of California Berkeley Berkeley CA 94720 USA

4. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

5. School of Polymer Science and Engineering Center for Optoelectronic Materials and Devices The University of Southern Mississippi Hattiesburg MS 39406 USA

Abstract

AbstractThe use of inorganic nanofillers has been an effective method to improve high‐temperature capacitive performance of dielectric polymers, though there are unmet challenges such as undesirable organic–inorganic compatibility, and low efficiencies and energy densities. Herein, a surface functionalization strategy using covalent organic frameworks (COFs) is employed to address such challenges in realizing high‐performing polymer composites. Specifically, core–shell structured nanoparticles, where ZrO2 nanoparticles act as the core and a COF material forms the shell, are constructed and composited with the polyetherimide (PEI) matrix. The design leverages the high electron affinity (EA) of the outer COF shell to create energy traps, thereby capturing free charges and limiting electrical conduction. Concurrently, the low EA and wide bandgap of the ZrO2 core introduce energy barriers to impede charge injection and migration. This orchestrated “energy level cascade” results in a marked reduction of leakage current and energy loss. The resulting polymer composite showcases an impressive discharged energy density of 6.21 J cm−3 at an efficiency above 90%, with a maximum discharged energy density reaching 7.43 J cm−3 at 150 °C. These performance metrics position the PEI/ZrO2@COF polymer composite to surpass or be on par with state‐of‐the‐art high‐temperature PEI composites and other advanced polymer dielectrics.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3