2D Rhenium Dichalcogenides: From Fundamental Properties to Recent Advances in Photodetector Technology

Author:

Satheesh Preethu P1,Jang Hyeon‐Sik2,Pandit Bhishma2,Chandramohan S.12ORCID,Heo Keun2ORCID

Affiliation:

1. 2D Materials and Devices Laboratory Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India

2. School of Semiconductor Science & Technology Jeonbuk National University Jeonju 54896 South Korea

Abstract

AbstractVan der Waals (vdW) materials of transition metal dichalcogenides (TMD) family with semiconducting properties are currently at the forefront of research in the field of optoelectronics. The ability to couple them with one another at atomic interface precision in a synergistic way opens up unprecedented opportunities to design photodetectors of broad spectral range with excellent figures of merits not accessible to discrete materials. Recent years have seen a surge of interest in group VII TMD materials (ReS2 and ReSe2) due to their strong optical response from bulk to monolayer and good ambient stability. Their band gap energies spanning over visible and near‐infrared ranges and the strong linear polarization sensitivity stemming from the distorted octahedral symmetry, are ideally suited for polarization‐sensitive photodetectors. This review aims at providing a comprehensive understanding of the fundamental properties, optical identification of various structural features, long‐debated question of band gap nature and interlayer coupling, and recent advances in the development of photodetectors based on ReS2, ReSe2, and their vdW heterostructures with other layered materials of practical importance. We critically review various conceptual device designs implemented based on band engineering, emphasize on the merits of these photodetectors and their potential applications, and provide an outlook for future prospects.

Funder

National Research Foundation of Korea

National Research Council of Science and Technology

Science and Engineering Research Board

Department of Science and Technology, Government of Kerala

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3