Highly Conductive n‐Type Polymer Fibers from the Wet‐Spinning of n‐Doped PBDF and Their Application in Thermoelectric Textiles

Author:

Sarabia‐Riquelme Ruben1ORCID,Noble Leah E.1,Alarcon Espejo Paula2,Ke Zhifan3,Graham Kenneth R.4,Mei Jianguo3,Paterson Alexandra F.2,Weisenberger Matthew C.1

Affiliation:

1. Center for Applied Energy Research University of Kentucky Lexington KY 40506 USA

2. Department of Chemical and Materials Engineering Center for Applied Energy Research University of Kentucky Lexington KY 40506 USA

3. Department of Chemistry Purdue University West Lafayette IN 47907 USA

4. Department of Chemistry University of Kentucky Lexington KY 40506 USA

Abstract

AbstractThe field of electronic textiles currently lacks n‐type polymer fibers that can complement the more established p‐type polymer fibers. Here, a highly conductive n‐type polymer fiber is obtained via wet‐spinning of n‐doped poly(3,7‐dihydrobenzo[1,2‐b:4,5‐b’]difuran‐2,6‐dione) (n‐PBDF). The electrical conductivity of the fibers increases from 1000 to 1600 S cm−1 with increased draw during processing and correlates well with Young's modulus. Wide‐angle X‐ray scattering reveals the existence of a bimodal orientation of the polymer chains, favoring parallel alignment to the fiber axis with increased draw. After 14 d in 80% humid air, fiber conductivity stabilizes maintaining 81% of the initial conductivity. Although the electrical conductivity drops slightly over time, the Seebeck coefficient increases, resulting in the highest thermoelectric power factor being measured at 91 µW m−1 K−2 for the most drawn fiber 14 d after its fabrication. A proof‐of‐concept two‐couple thermoelectric textile is crafted by embroidering bundles of n‐type PBDF fibers and p‐type PEDOT:PSS fibers. The device generates 2.40 nW at a 22 °C temperature gradient. This work represents the initial steps and a crucial advancement toward fabricating high‐performance n‐type polymer fibers that can complement their p‐type counterparts to close the existing performance gap.

Funder

Office of Naval Research

National Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3