Current‐Adaptive Li‐Ion Storage Mechanism in High‐Rate Conversion‐Alloying Metal Chalcogenides

Author:

Li Wangyang1,Deng Liying2,Cao Jiaqi1,Ke Bingyuan1,Wang Xinghui134ORCID,Ni Shibing5,Cheng Shuying146,Lu Bingan7

Affiliation:

1. College of Physics and Information Engineering Institute of Micro‐Nano Devices and Solar Cells Fuzhou University Fuzhou 350108 China

2. College of Mechanical and Electrical Engineering Fujian Agriculture and Forestry University Shangxiadian Road 15, Cangshan District Fuzhou 350002 China

3. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China

4. Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou 213000 China

5. College of Materials and Chemical Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang 443002 China

6. Fujian Key Laboratory of Electrochemical Energy Storage Materials Fuzhou University Fuzhou Fujian 350002 China

7. School of Physics and Electronics Hunan University Changsha 410082 P. R. China

Abstract

AbstractBeyond the high theoretical capacity, conversion‐alloying metal chalcogenides (CAMCs) exhibit exceptional high‐rate performance as Li‐ion battery electrodes. However, the inherent origin of the high‐rate performance remains elusive, especially given the lower intrinsic conductivity of CAMCs. Here, the correlation between phase evolution and charge transport dynamics in fully activated CAMCs is systematically investigated, elucidating a current‐adaptive Li‐ion storage mechanism to explain the anomalous high‐rate performance. Briefly, the deconversion reaction manipulated by ion diffusion acts as a “regulator” to adaptively modulate the transition from metal (high electronic conductivity) and lithium chalcogenides (high ionic conductivity) to CAMCs, thus removing the charge transport bottleneck without affecting the formation of the metal feedstock required for the alloying reaction. On this basis, the high capacity can be maintained at high rates through a “fading‐free” alloying reaction. This study offers a novel perspective for the design of high‐rate electrode materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3